DHV-tested Equipment | Flying Equipment Database

Manufacturers / Dealers

Flying Schools

Clubs

TECHNICAL DATA DHY TESTREPORT LTF DATASHEET PARTS LIST OPERATING INSTRUCTION PRINT

DHV TESTREPORT LTF

SWING NYOS 2 RS L

Inflation/take-off

Type designation Swing Nyos 2 RS L Type test reference no $\,$ DHV GS-01-2680-22 $\,$

Holder of certification Swing Flugsportgeräte GmbH

Manufacturer Swing Flugsportgeräte GmbH Classification B Winch towing Yes

Number of seats min / max $\ 1\ /\ 1$

Accelerator Yes Trimmers No

BEHAVIOUR AT MIN WEIGHT IN FLIGHT (100KG)

Test pilots

Symmetric control pressure Increasing

Mario Eder No release

Sebastian Mackrodt No release

Increasing

<u> </u>	¦A	¦A
Rising behaviour	Smooth, easy and constant rising	Smooth, easy and constant rising

Kising bei	aviour Sillouth, easy and constant rising	Sillootii, easy and constan	t Hallig
Special take off technique re	quired No	No	

<u>Landing</u>	A	A	
Special landin	ng technique required No	No	

Speeds in straight flight	A	A
Trim speed more than 30 km/h	Yes	Yes
Speed range using the centrals larger than 10 km/h	Voc	Voc

	Minimum speed Less than 25 km/h	Less than 25 km/h
Control movement	A	A

Symmetric control trav	el Greater than 60 cm	Greater than 65 cm
lity exiting accolorated flight		i.

Pitch stability exiting accelerated flight	Α	A
Dive forward angle on e	kit Dive forward less than 30°	Dive forward less than 30°

Dive for ward dright on ex	CLE DIVE TO WATA 1635 CHAIT 50	Dive forward less than 50	
Collapse occu	rs No	No	
Pitch stability operating controls during	1		

accelerated flight	Α	Α
Collapse occu	rs No	No

Roll stability and damping	A	A

Roll Stability and damping	įA	įA
	Oscillations Reducing	Reducing

Stability in gentle spirals	A	A	

Tendency to return to straight flight Spontaneous exit	Spontaneous exit
--	------------------

Behaviour exiting a fully developed spiral dive	В
Initial response of glider (first 180°) Immediate reduction of rate of turn	Immediate reduction of rate of turn

Tendency to return to straight flight Spontaneous exit (g force decreasing, rate of turn decreasing) rate of turn decreasing) rate of turn decreasing) Turn angle to recover normal flight Less than 720°, spontaneous recovery 720° to 1 080°, spontaneous recovery

T. Control of the con	The state of the s	1
Symmetric front collapse	:B	A

Entry Rocking back less than 45° Rocking back less than 45° Recovery Spontaneous in 3 s to 5 s Spontaneous in less than 3 s Dive forward 0° to 30° Dive forward angle on exit Dive forward 0° to 30°

Folding lines used no no Unaccelerated collapse (at least 50 % chord) B Entry Rocking back less than 45° Rocking back less than 45° **Recovery** Spontaneous in 3 s to 5 s Spontaneous in 3 s to 5 s Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Change of course Keeping course Cascade occurs No Folding lines used no Accelerated collapse (at least 50 % chord) B В Entry Rocking back less than 45° Rocking back less than 45° **Recovery** Spontaneous in 3 s to 5 s Spontaneous in 3 s to 5 s Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Change of course Keeping course Keeping course Cascade occurs No Folding lines used no no Exiting deep stall (parachutal stall) A Deep stall achieved Yes Recovery Spontaneous in less than 3 s Spontaneous in less than 3 s Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Change of course Changing course less than 45° Changing course less than 45° Cascade occurs No High angle of attack recovery A A Recovery Spontaneous in less than 3 s Spontaneous in less than 3 s Cascade occurs No Recovery from a developed full stall A Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Collapse No collapse No collapse Cascade occurs (other than collapses) No Rocking back Less than 45° Less than 45° Line tension Most lines tight Most lines tight Small asymmetric collapse A Change of course until re-inflation Less than 90° Less than 90° Maximum dive forward or roll angle Dive or roll angle 0° to 15° Dive or roll angle 15° to 45° Re-inflation behaviour Spontaneous re-inflation Spontaneous re-inflation Total change of course Less than 360° Less than 360° Collapse on the opposite side occurs No (or only a small number of collapsed cells No (or only a small number of collapsed with a spontaneous re inflation) cells with a spontaneous re inflation) Twist occurs No Nο Cascade occurs No No Folding lines used no Large asymmetric collapse B Change of course until re-inflation 90° to 180° Maximum dive forward or roll angle Dive or roll angle 15° to 45° Dive or roll angle 15° to 45° Re-inflation behaviour Spontaneous re-inflation Spontaneous re-inflation Total change of course Less than 360° Less than 360° **Collapse on the opposite side occurs** No (or only a small number of collapsed cells with a spontaneous re inflation) No (or only a small number of collapsed cells with a spontaneous re inflation) Twist occurs No Nο Cascade occurs No Nο Folding lines used no Small asymmetric collapse accelerated A Α Change of course until re-inflation Less than 90° Less than 90° Maximum dive forward or roll angle Dive or roll angle 0° to 15° Dive or roll angle 15° to 45° Re-inflation behaviour Spontaneous re-inflation Spontaneous re-inflation Total change of course Less than 360° Less than 360° Collapse on the opposite side occurs No (or only a small number of collapsed cells No (or only a small number of collapsed with a spontaneous re inflation) cells with a spontaneous re inflation) Twist occurs No No Cascade occurs No Folding lines used no no Large asymmetric collapse accelerated B Change of course until re-inflation 90° to 180° 90° to 180° Maximum dive forward or roll angle Dive or roll angle 15° to 45° Dive or roll angle 15° to 45° Re-inflation behaviour Spontaneous re-inflation Spontaneous re-inflation Total change of course Less than 360° Less than 360° Collapse on the opposite side occurs No (or only a small number of collapsed cells No (or only a small number of collapsed with a spontaneous re inflation) cells with a spontaneous re inflation) Twist occurs No No Cascade occurs No Folding lines used no no

<u>Directional control with a maintained</u> asymmetric collapse

Change of course Keeping course

Cascade occurs No

Keeping course

Nο

Able to keep course Yes Yes 180° turn away from the collapsed side possible in Yes Yes 10 s Amount of control range between turn and stall or More than 50 % of the symmetric control More than 50 % of the symmetric spin travel Trim speed spin tendency A Spin occurs No A Low speed spin tendency A Spin occurs No No Recovery from a developed spin A Spin rotation angle after release Stops spinning in less than 90° Stops spinning in less than 90° Cascade occurs No **B-line stall** A Change of course before release Changing course less than 45° Changing course less than 45° Behaviour before release Remains stable with straight span Remains stable with straight span Recovery Spontaneous in less than 3 s Spontaneous in less than 3 s Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Cascade occurs No A A Big ears Entry procedure Standard technique Dedicated controls Behaviour during big ears Stable flight Recovery Spontaneous in less than 3 s Spontaneous in less than 3 s Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Big ears in accelerated flight A A Entry procedure Standard technique Dedicated controls Behaviour during big ears Stable flight Stable flight **Recovery** Spontaneous in less than 3 s Spontaneous in less than 3 s Dive forward angle on exit Dive forward 0° to 30° Dive forward 0° to 30° Behaviour immediately after releasing the Stable flight Stable flight accelerator while maintaining big ears Alternative means of directional control 180° turn achievable in 20 s Yes Stall or spin occurs No Any other flight procedure and/or configuration described in the user's manual

No other flight procedure or configuration described in the user's manual